If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2-8x+18=0
a = -3; b = -8; c = +18;
Δ = b2-4ac
Δ = -82-4·(-3)·18
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{70}}{2*-3}=\frac{8-2\sqrt{70}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{70}}{2*-3}=\frac{8+2\sqrt{70}}{-6} $
| (Y*40)+(y+8)=48y | | (.75)x=10/11 | | 63+y=-8 | | | | 86+y=-99 | | (Y*40)+(y+8)=y*48 | | | | | | | | | | | | | | | | | | | | | | -72=24+w | | (3/4)x=(10/11) | | 7x^3+5x^2=0 | | 29.19+x=53.74 | | 10x+5+90+6x+4=180 | | 6.1w-4.5=26 | | 8x-3(5x-2)=20 | | x+2=80 | | 4x+(10+2x)=142 | | (-10x^2)-36x+16=0 | | 5(-6x+9)=-75 | | 0=2(x+7x-44) | | -10x^2)-36x+16=0 | | x2+2x=10 | | 5(-6x+9=-75 | | 3=y/3.84 |